Пересечение плоскости с многогранником http://ficlas.ru/
Арифметическая прогрессия

Математика школьный курс лекций

Поверхности второго порядка

К невырожденным поверхностям второго порядка относятся эллипсоид, эллиптический параболоид, гиперболический параболоид, однополостной гиперболоид и двуполостной гиперболоид. Строгое изучение этих поверхностей проводится в курсе аналитической геометрии. Здесь же мы ограничимся определениями и иллюстрациями.

Определение 5.12. 

Поверхность, задаваемая в некоторой прямоугольной декартовой системе координат уравнением a  > 0, b  > 0, c  > 0, называется эллипсоидом .

1
Рисунок 5.7.1. Приложения двойного интеграла. Вычисление площадей плоских областей Математика примеры решения заданий курсовой работы

Свойства эллипсоида.

    Эллипсоид – ограниченная поверхность, поскольку из его уравнения следует

    Эллипсоид обладает

      центральной симметрией относительно начала координат, осевой симметрией относительно координатных осей, плоскостной симметрией относительно начала координат.

    В сечении эллипсоида плоскостью, перпендикулярной любой из координатных осей, получается эллипс.

2
Рисунок 5.7.2.

Определение 5.13. 

Поверхность, задаваемая в некоторой прямоугольной декартовой системе координат уравнением a  > 0, b  > 0, называется эллиптическим параболоидом .

Свойства эллиптического параболоида.

    Эллиптический параболоид – неограниченная поверхность, поскольку из его уравнения следует, что z  ≥ 0 и принимает сколь угодно большие значения.

    Эллиптический параболоид обладает

      осевой симметрией относительно оси Oz , плоскостной симметрией относительно координатных осей Oxz и Oyz .

    В сечении эллиптического параболоида плоскостью, ортогональной оси Oz , получается эллипс, а плоскостями, ортогональными осям Ox и Oy – парабола.

Определение 5.14. 

Поверхность, задаваемая в некоторой прямоугольной декартовой системе координат уравнением a  > 0, b  > 0, называется гиперболическим параболоидом .

3
Рисунок 5.7.3.
Вертикальные прямые, к которым неограниченно приближается график функции, назыают вертикальными ассимптотами. Чаще всего график имеет вертикальную ассимптоту x=a в случае, если варажение, задающее данную функцию, имеет вид дроби, знаменатель которой обращается в нуль в точке a, а числитель нет. Например, график функции f(x)=1/(x-1) имеет вертикальную ассимптоту x=1
Поверхности второго порядка