Взаимодействие нейтронов с ядрами

 

Формула Брейта-Вигнера

Задача 4.1 Получить с помощью квазиклассических рассуждений выражение для прицельного параметра b бомбардирующего нейтрона. Вычислить первые три возможных значения b для нейтронов с кинетической энергией Tn = 1,00 МэВ.

Задача 4.2 Найти максимальное значение bmax прицельного параметра при взаимодействии нейтрона с кинетической энергией Tn = 5,00 МэВ с ядрами Ag.

Задача 4.3 Показать, что для нейтронов с длиной волны геометрическое сечение взаимодействия с ядром , где R – радиус ядра. Оценить эту величину для нейтронов с энергией Tn = 10 МэВ, налетающих на ядро Au.

Задача 4.4 Оценить максимальную величину центробежного барьера для нейтронов с кинетической энергией Tn = 7,0 МэВ при взаимодействии с ядрами Sn.

Задача 4.5 Найти вероятность того, что в результате взаимодействия медленных нейтронов (l = 0) с ядрами, спин которых I = 1, составное ядро образуется в основном состоянии со спином J = 3/2. Считать, что спины нейтронов и ядер до взаимодействия имеют всевозможные взаимные ориентации.

Нептуний, Np, - элемент с порядковым номером 93 - первый из искусственных заурановых элементов. Атомный вес 237. Назван в честь планеты Нептун. Радиоактивен, наиболее устойчивый изотоп 237Np (Т=2,14*106 лет).

Задача 4.6 Исходя из формулы Брейта-Вигнера для сечения σа  образования составного ядра, получить выражение для сечений процессов упругого рассеяния σnn и радиационного захвата σ нейтрона.

Задача 4.7 Выразить с помощью формулы Брейта-Вигнера сечение радиационного захвата нейтрона σот его кинетической энергии Tn, если известно сечение σ0 данного процесса при Tn = Т0 и значения Т0 и Г.

Задача 4.9 Найти с помощью формулы (4.7.1) Брейта-Вигнера для сечения радиационного захвата нейтрона отношение σmin/σ0, где σmin – минимальное сечение процесса (n,γ) в области Tn < T0 (см. рис. 4.1); σ0 – сечение этого процесса при Tn = T0, если Г << Т0.

Задача 4.10 Какова должна быть толщина d кадмиевой пластинки, чтобы параллельный пучок тепловых нейтронов при похождении через нее уменьшился в 100 раз?

Задача 4.11 В центре сферического слоя графита, внутренний и внешний радиусы которого R1 = 1,0 см и R2 = 10,0 см находится точечный источник нейтронов с кинетической энергией Тn = 2 МэВ. Интенсивность источника I0 =2,0·104 с-1. Сечение взаимодействия нейтронов данной энергии с ядрами углерода σ = 1,6 б. Определить плотность потока нейтронов Фn(R2) на внешней поверхности графита, проходящих данный слой без столкновений.

Задача 4.12 Узкий пучок нейтронов с кинетической энергией 10 эВ проходит через счетчик длиной l = 15 см вдоль его оси. Счетчик наполнен газообразным BF3 при нормальных условиях (бор природного изотопного состава). Определить эффективность регистрации нейтронов с данной энергией, если известно, что сечение реакции (n,α) подчиняется закону 1/v.

Задача 4.13 Небольшой образец ванадия 51V массой m = 0,5 г активируется до насыщения в поле тепловых нейтронов. Непосредственно после облучения в течение t = 5,0 мин было зарегистрировано = 8,0·109 импульсов при эффективности регистрации ε = 1,0·10-2. Определить концентрацию nn нейтронов, падающих на образец.

Задача 4.14 Какую долю η первоначальной кинетической энергии Т0 теряет нейтрон при: а) упругом лобовом столкновении с первоначально покоившимися ядрами 2Н, 12С и 235U; б) упругом рассеянии под углом  на первоначально покоившемся дейтоне, если угол = 30, 90 и 150º?

Задача 4.15 Нейтроны с кинетической энергией Т0 упруго рассеиваются на ядрах с массовым числом А. Определить: а) энергию Т нейтронов рассеянных под углом  в СЦИ; б) долю нейтронов, кинетическая энергия которых в результате однократного рассеяния лежит в интервале (Т, Т + dТ), если рассеяние в СЦИ изотропно.

Задача 4.16 Нейтроны испытывают рассеяние на первоначально покоившихся протонах. Считая это рассеяние изотропным в СЦИ, найти с помощью векторной диаграммы импульсов:

Математика Примеры решения задач физика