Строение атома и молекул Основные формулы и задачи

Математика
Дифференциальные уравнения

Исследование функции

Комплексные числа
Построение графика
Графики функций
Квадратный трёхчлен
Предел последовательности
Предел функции
Комбинаторика
Бином Ньютона
Использование внешних
данных
Создание форм для
ввода данных
Создание и печать отчетов
Математика школьный курс
Векторная алгебра
Физика
Геометрическая оптика

Фотометрия

Дифракция севета
Поляризация света
Оптика движущихся тел
Интерференция света
Фотоэлектрический эффект
Рентгеновское излучение
Радиоактивность
Ядерные реакции
Графика
Машиностроительное черчение
Начертательная геометрия
Дизайн в промышленности
Иконопись
Задачи
Кинематика
Механика
Термодинамика
Электростатика
Магнитное поле
Ядерная физика
Сопротивление материалов
Расчетные нагрузки
Понятие о напряжениях и деформациях
Основные понятия теории надежности
Расчеты на прочность
Расчет сварных соединений.
Расчет валов
Заклепочные соединения
Расчет гибких нитей
Усталостная прочность
Основы вибропрочности конструкций
Расчет быстровращающегося диска
Расчет электротехнических цепей
Законы Ома и Кирхгофа для цепей постоянного тока
Расчет трехфазной цепи переменного тока
Трехфазный асинхронный двигатель
Электротехника и электроника
Ферромагнитные материалы
Однофазные выпрямители
Модернизация компьютера

ПРОСТЕЙШИЕ СЛУЧАИ ДВИЖЕНИЯ МИКРОЧАСТИЦ

Одномерное временное уравнение Шредингера

где i мнимая единица (); mмасса частицы; ψ (х, t)— волновая функция, описывающая состояние частицы.

Волновая функция, описывающая одномерное движение свобод­ной частицы,

W(x,t) = Aexp(px – Et),

где А — амплитуда волны де Бройля; р — импульс частицы; Е — энергия частицы. 

Одномерное уравнение Шредингера для стационарных состояний [an error occurred while processing this directive]

где Е — полная энергия частицы; U (x) - потенциальная энергия;

ψ (x) —  координатная (или амплитудная) часть волновой функции

Для случая трех измерений ψ(x, y, z,) уравнение Шредингера

 или в операторной форме

, где — оператор Лапласа

При решении уравнения Шредингера следует иметь в виду стан­дартные условия которым должна удовлетворять волновая функция: конечность (во всем пространстве), однозначность, непроч­ность самой ψ - функции и ее первой производной.

· Вероятность dW обнаружить частицу в интервале от х до x + dx (в одномерном случае) выражается формулой

dW = [ψ(x)] 2 dx

  где [y (x)]2— плотность вероятности.

Вероятность W обнаружить частицу в интервале от х1 до х2 находится интегрированием dW в указанных пределах 

W=[y(x)2­ dx

· Собственное значение энергии Еn частицы, находящейся на n-м энергетическом уровне в бесконечно глубоком одномерном прямоугольном потенициальеом ящике, определяется формулой

 (n = 1, 2, 3, …)

где l — ширина потенциального ящика.

 

СТРОЕНИЕ АТОМА

СПЕКТРЫ МОЛЕКУЛ

ВОЛНОВЫЕ СВОЙСТВА МИКРОЧАСТИЦ

 

Пример. Электрон, начальной скоростью которого можно пренебречь, прошел ускоряющую разность потенциалов U. Найти длину волны де Бройля l для двух случаев: 1) U1= = 51 кВ; 2) U2 = 510 кВ.

Пример . На узкую щель шириной а = 1 мкм направлен парал­лельный пучок электронов, имеющих скорость = 3,65 Мм/с. Учи­тывая волновые свойства электронов, определить расстояние х между двумя максимумами интенсивности первого порядка в дифракционной картине, полученной на экране, отстоящем на L = 10 см от щели.

Пример. Собственная угловая частота  w колебаний молекулы НС1 равна 5,63×1014 с-1, коэффициент ангармоничности g = 0,0201. Определить: 1) энергию DE2, 1(в электрон-вольтах) перехода моле­кулы с первого на второй колебательный энергетический уровень

Франческо Бартоломео Растрелли (1700-1771)

Пример. Для молекулы HF определить: 1) момент инерции J, если межъядерное расстояние d = 91,7 им; 2) вращательную посто­янную В; 3) энергию, необходимую для возбуждения молекулы на первый вращательный уровень.

Пример. Терм 2P3/2 расшифровывается следующим образом:мультиплетность 2S + 1 = 2; следовательно, S = 1/2, символу Р соответствует L = 1, a J=3/2.

Пример. Электрон с энергией E = 4,9 эВ движется в положи­тельном направлении оси х (рис. 46.3). Высота U потенциального барьера равна 5 эв. при какой ши­рине d барьера вероятность W про­хождения электрона через него бу­дет равна 0,2?

Пример. Моноэнергетический поток электронов (E=100эВ) падает на низкий * прямоугольный потенциальный баpьеp бeсконечной ширины (рис. 46.1). Определить высо­ту потенциального барь­ера U, если известно, что 4 % падающих на барьер электронов отра­жается .

Пример. Электрон находится в бесконечно глубоком одно­мерном прямоугольном потенциальном ящике шириной /. Вычис­лить вероятность того, что электрон, находящийся в возбужденном состоянии (п=2), будет обнаружен в средней трети ящика.

Пример Используя соотношение неопределенностей энергии и времени, определить естественную ширину ∆λ спектральной линии излучения атома при переходе его из воз­бужденного состояния в основное. Сред­нее время τ жизни атома в возбужденном состоянии принять равным 10-8 с, а дли­ну волны λ излучения—равной 600 нм.

Пример. Кинетическая энергия Т электрона в атоме водорода составляет величину порядка 10 эВ. Используя соотношение неопре­деленностей, оценить минимальные линейные размеры атома.

Пример На грань кристалла никеля падает параллельный пучок электронов. Кристалл поворачивают так, что угол скольже­ния θ изменяется. Когда этот угол делается равным 64°, наблюдается максимальное отражение электронов, соответствующее дифракцион­ному максимуму первого порядка. Принимая расстояние d между атомными плоскостями кристалла равным 200 пм, определить длину волны де Бройля λ электронов и их скорость ν.

 

 

 

 

Математика Примеры решения задач физика