Электростатическое и магнитное поле

Математика
Дифференциальные уравнения

Исследование функции

Комплексные числа
Построение графика
Графики функций
Квадратный трёхчлен
Предел последовательности
Предел функции
Комбинаторика
Бином Ньютона
Использование внешних
данных
Создание форм для
ввода данных
Создание и печать отчетов
Математика школьный курс
Векторная алгебра
Физика
Геометрическая оптика

Фотометрия

Дифракция севета
Поляризация света
Оптика движущихся тел
Интерференция света
Фотоэлектрический эффект
Рентгеновское излучение
Радиоактивность
Ядерные реакции
Графика
Машиностроительное черчение
Начертательная геометрия
Дизайн в промышленности
Иконопись
Задачи
Кинематика
Механика
Термодинамика
Электростатика
Магнитное поле
Ядерная физика
Сопротивление материалов
Расчетные нагрузки
Понятие о напряжениях и деформациях
Основные понятия теории надежности
Расчеты на прочность
Расчет сварных соединений.
Расчет валов
Заклепочные соединения
Расчет гибких нитей
Усталостная прочность
Основы вибропрочности конструкций
Расчет быстровращающегося диска
Расчет электротехнических цепей
Законы Ома и Кирхгофа для цепей постоянного тока
Расчет трехфазной цепи переменного тока
Трехфазный асинхронный двигатель
Электротехника и электроника
Ферромагнитные материалы
Однофазные выпрямители
Модернизация компьютера

Электромагнитное взаимодействие

Электрический заряд

Электромагнитное поле

Уравнения поля

Полевые уравнения Поток вектора Циркуляция потока

Статическое электромагнитное поле (электростатика)

Общие свойства электростатического поля

Потенциал

Работа по перемещению заряда по замкнутому контуру равна нулю.

Это означает другое: что работа по перемещению заряда из точки (1) в точку (2) не зависит от пути перемещения.

Это, может быть, не очень очевидно. Вот я перешёл по некоторому пути из (1) в (2), поле совершило некоторую работу, кстати, эта работа положительна. Положу рельсы из точки (1) в точку (2). Поставлю на них вагончик от игрушечной железной дороги, помещу в вагончик заряд, и этот вагончик поедет, (избыток кинетической энергии перейдёт во внутреннюю). В точке (2) перевожу стрелки и пускаю вагончик по другому пути. Так вагончик будет ездить, к нему можно приделать вертушку... но известно, что циркуляция ноль, и построить вечного двигателя нельзя.

Поля, создаваемые распределениями зарядов с хорошей симметрией

Цилиндрическая симметрия Вопрос, на самом деле, с зеркальной симметрией не такой простой. Вот ещё до не очень давнего времени, ещё на моей памяти, считалось, что зеркальная симметрия, конечно, имеет место в природе, что нет отличия между левым и правым. Но обнаружили в 60-х гг., что на самом деле такая симметрия не выполняется, природа отличает правое от левого. Будет ещё повод об этом поговорить. Но здесь это для нас выполняется.

Поле системы точечных зарядов. Принцип суперпозиции

Потенциал системы точечных зарядов

Поле диполя

Сила, действующая на ограниченное распределение заряда во внешнем поле

Сила, действующая на диполь во внешнем поле

Вещество в электростатическом поле

Диэлектрики в электрическом поле

Проводники в электростатическом поле

Конденсаторы

Энергия конденсатора

Энергия электростатического поля Процедура, например, такая: вот имеется однородное поле, я беру металлическую пластину и вдвигаю её в это поле перпендикулярно силовым линиям, работа при этом не совершается и ничего не происходит; вдвигаю ещё одну пластину таким же образом, тоже ничего не происходит, ну, правда, внутри проводящей пластины поле исчезает, на поверхности выступают заряды, но это ерунда. А теперь я беру проводничок к одной пластине, ключ и проводничок к другой, тоже невинное дело, ничего при этом не происходит. А когда я замыкаю ключ, что произойдёт?

Стационарные магнитные поля

Магнитное поле, создаваемое произвольным проводником с током

Магнитный момент

Магнитный момент витка с током

Сила, действующая на проводник с током в магнитном поле

Магнитное поле в веществе Ферромагнетики замечательны тем. Что они не только намагничиваются в магнитном поле, а им свойственно остаточное намагничивание, если он уже однажды был намагничен, то, если убрать внешнее поле, то он останется намагниченным в отличии от диа- и парамагнетиков. Постоянный магнит – это и есть ферромагнетик, который без внешнего поля намагничен сам по себе. Кстати, имеются аналоги этого дела в электричестве: имеются диэлектрики, которые поляризованы сами по себе без всякого внешнего поля

Явление электромагнитной индукции

Электродвижущая сила

Закон Ома

Закон сохранения заряда

Явление самоиндукции

Нестационарные поля

Закон сохранения энергии для электромагнитного поля

Электромагнитные волны

Волновое уравнение и его решение

Другой пример – звуковая волна.

Имеем синусоидальную звуковую волну. Как её создать? Источник колеблется с одной частотой (такой гул на одной частоте мы редко воспринимаем, он, кстати, очень раздражает). Если идёт такая волна определённой тональности, то, когда вы стоите, у вас в ухе давление со временем меняется и создаёт силу, которая давит на перепонку в ухе, колебания перепонки передаются в мозги, с помощью там разных передаточных устройств, и мы будем слышать звук. А что будет, если вы будете бежать вдоль волны со скоростью её распространения? Будет постоянное давление на перепонку и всё, не будет никакого звука. Правда, пример гипотетический, потому что, если в воздухе бежать со скоростью звука, то у вас будет так свистеть в ушах, что вам не будет не до восприятия этой струны

Математика Примеры решения задач физика