Уравнения поля Потенциал Диэлектрики Проводники Конденсаторы магнитные поля Магнитный момент Электродвижущая сила Закон Ома

Стационарные магнитные поля

 

Напомню, как мы добыли электростатику. У нас есть четыре уравнения Максвелла, в которых сидит всё электричество. Мы там положили , , получили электростатику. Мы теперь ослабим эти наложенные условия, мы теперь положим , но , получим стационарное магнитное поле. То есть со временем ничего не меняется, но плотность тока , а  связано с движением заряда. Заряды двигаются, но стационарно, двигаются так, что в любой точке пространства со временем ничего не меняется. Наглядный пример: течёт река, массы воды движутся, но течение стационарно, скорость воды в каждой точке одна и та же. Когда ветер дует то туда, то сюда порывами, это не стационарное течение, а, если ветер дует без порывов: в ушах свистит и всё, а ничего не меняется со временем, то это пример стационарного течения.

Уравнения электростатики (первое и второе уравнения Максвелла) остаются без изменения, а третье и четвёртое будут иметь вид: [an error occurred while processing this directive]

Стационарное означает неменяющееся со временем. Ладно, свойства этого поля мы обсудим в следующий раз.

Мы изучаем стационарное магнитное поле. Напомню исходные положения: , то есть заряды движутся, но стационарно. Это поле будет описываться двумя уравнениями (третьим и четвёртым уравнениями Максвелла):

.

Что означает третье уравнение? Что поток вектора  через любую замкнутую поверхность равен нулю, где бы эта поверхность ни была взята и какую бы форму она не имела. Это означает, что вклады в поток знакопеременны, то есть где-то вектор направлен внутрь поверхности, а где-то наружу. Формально из равенства 3. можно показать, что, сколько линий выходит из поверхности, столько в неё и входит. Иначе, никакая силовая линия не заканчивается внутри замкнутой поверхности и никакая не начинается. Как это может быть? Это может быть только так: все силовые линии замкнуты. Короче говоря, из третьего уравнения следует, что силовые линии индукции магнитного поля замкнуты. То есть силовая линия может как-то идти, идти, но она обязательно вернётся и укусит себя за хвост.

 Для электрического поля мы имели такую вещь: . Слева конструкция такая же, но справа стоял заряд внутри поверхности. Отсюда следствия: 1) силовые линии замкнуты и 2) отсутствуют магнитные заряды, то есть нет таких частиц, из которых выходили бы таким образом (см. рис.7.1) линии индукции, такие частицы называются магнитными монополями.


Магнитные монополи отсутствуют. Это специальная проблема физики. Физика вслед за природой, которую она отражает, любит симметрию, и уравнения максвелла обладают симметрией, но ограниченно, в частности, для напряжённости справа стоит сумма зарядов, для магнитной индукции здесь стояла бы сумма магнитных монополей. Вот такое нарушение симметрии раздражает, повторяю, природа любит симметрию. Были попытки лет двадцать назад обнаружить монополи, так кажется, из соображений симметрии должны они быть, но не обнаружили. Теории приходилось искать причины, почему их нет. Соображения симметрии настолько довлеют, что её нарушения требуют какого-то объяснения. Ну, разные есть гипотезы, в которых фигурируют эти монополи, но почему мы не обнаруживаем их здесь, тоже там разные объяснения, вплоть до того, что на ранних стадиях возникновения Вселенной они были и попросту оказались вытолкнутыми за пределы окружающего нас пространства. В общем, есть теории, в которых они фигурируют, и в рамках тех теорий ищутся объяснения, почему мы их не находим на Земле. Пока мы, ссылаясь на то, что они не обнаружены, пишем здесь ноль и имеем дело только с замкнутыми силовыми линиями.

Теперь обратимся к четвёртому уравнению. Читаем его: возьмём замкнутый контур, зададимся направлением обхода (обход и нормаль должны образовывать правый винт), в каждой точке определяем , берём скалярное произведение , получаем число, для всех элементов находим эти скалярные произведения, получаем циркуляцию  по контуру, это некоторое число. Уравнение утверждает, что, если эта циркуляция отлична от нуля, то отлична от нуля правая часть. А здесь что? Плотность тока  связана с движущимися зарядами, скалярное произведение  - это заряд, который проскакивает через эту площадку за единицу времени. Если циркуляция по контуру отлична от нуля, то это означает, что какие-то заряды пересекают поверхность, натянутую на этот контур. Это смысл четвёртого уравнения.


Тогда мы можем сделать такой вывод: силовые линия магнитного поля замкнута, возьмём в качестве контура какую-то линию магнитного поля, по этой линии , потому что произведение  не меняет знак. Это означает, что, если я возьму поверхность S, натянутую на силовую линию магнитного поля, то, заведомо, эту поверхность пересекают заряды таким образом:

 

Можно сказать, что силовая линия магнитного поля всегда охватывает ток, иначе говоря, это выглядит так: если мы имеем проводник, по которому течёт ток Á, для любого контура, который охватывает проводник с током, ; если имеется несколько проводников, опять я возьму контур, поверхность, на него натянутую, её протыкают два проводника, тогда , при чём с учётом знаков: ток Á1 - положительный, Á2 -отрицательный. Мы имеем тогда . Вот это сразу общие такие свойства магнитного поля и тока. Значит, силовая линия всегда охватывает ток.

Магнитное поле бесконечного прямого проводника с током

Пусть вдоль оси OZ расположен бесконечно длинный проводник, по которому течёт ток с силой Á. А сила тока это что такое? ,  - заряд, который пересекает поверхность S за время . Система обладает осевой симметрией. Если мы введём цилиндрические координаты r, j, z, то цилиндрическая симметрия означает, что  и, кроме того, , при смещении вдоль оси OZ, мы видим то же самое. Таков источник. Магнитное поле должно быть таким, чтобы удовлетворялись эти условия  и . Это означает вот что: силовые линии магнитного поля – окружности, лежащие в плоскости ортогональной проводнику. Это немедленно позволяет найти магнитное поле.

Пусть у нас это проводник.

 

Вот ортогональная плоскость,

 

вот окружность радиуса r,

 

я возьму тут касательный вектор, вектор, направленный вдоль j, касательный вектор к окружности.

Тогда, ,  где .

В качестве замкнутого контура выбираем окружность радиуса r=const. Пишем тогда , сумма длин по всей окружности (а интеграл это ни что иное, как сумма) – это длина окружности. , где Á – сила тока в проводнике. Справа стоит заряд, который пересекает поверхность за единицу времени. Отсюда мораль: . Значит, прямой проводник создаёт магнитное поле с силовыми линиями в виде окружностей, охватывающих проводник, и эта величина В убывает как  при удалении от проводника, ну, и стремится к бесконечности, если мы приближаемся к проводнику, когда контур уходит внутрь проводника.

Этот результат только для случая, когда контур охватывает ток. Понятно, что бесконечный проводник нереализуем. Длина проводника, – наблюдаемая величина, и никакие наблюдаемые величины не могут принимать бесконечных значений, не такой линейки, которая позволила бы измерить бесконечную длину. Это нереализуемая вещь, тогда какой толк в этой формуле? Толк простой. Для любого проводника, будет справедливо следующее: достаточно близко к проводнику силовые линии магнитного поля – вот такие замкнутые окружности, охватывающие проводник, и на расстоянии  (Rрадиус кривизны проводника), будет справедлива эта формула.

 

Магнитное поле - особый вид материи, специфической особенностью которой является способность действовать на движущийся заряд, проводники с током, тела, обладающие магнитным моментом, с силой, зависящей от вектора скорости заряда, направления силы тока в проводнике и от направления магнитного момента тела.
Математика Примеры решения задач физика Электромагнитное и электростатическое поле Магнитный момент витка с током