Динамика вращательного движения Динамика материальной точки и тела Механические колебания Волны в упругой среде. Акустика Молекулярное строение вещества Молекулярно-кинетическая теория газов Строение атома и молекул

Дифракция излучения и частиц на кристаллической решетке

     Несмотря на большой прогресс в развитии техники, к настоящему времени не создано достаточно надежных и эффективных приборов, позволяющих непосредственно наблюдать расположение отдельных атомов в кристаллической решетке или в молекулах. Самые совершенные электронные микроскопы позволяют наблюдать только очень крупные атомы, например урана или золота, расположенные вблизи более мелких. Наиболее распространенные электронные микроскопы позволяют наблюдать неоднородности с размерами в несколько атомов [7]. Ионные микроскопы (проекторы) [1,8] хотя и позволяют наблюдать расположение отдельных крупных атомов, но очень сложны в использовании. Точное определение расстояний между атомами или кристаллическими плоскостями этим методом крайне затруднительно.
     Сегодня самым эффективным методом изучения взаимного расположения атомов является дифракция микрочастиц: фотонов, электронов, нейтронов. Именно этими методами в основном получены данные о структуре кристаллов и молекул, помещенные в справочники. При исследовании кристалла дифракционными методами на кристалл направляют почти параллельный пучок частиц, изучают распределение интенсивности дифракции этих частиц по разным направлениям (а иногда и при различных ориентировках кристалла), а затем по дифракционной картине делают выводы о типе элементарной ячейки кристалла и строении его базиса. Эти методы позволяют определять периоды кристаллической решетки с точностью до 4-5 знака и определять с точностью до 2-3 знака расположение атомов в базисе.
     Для наблюдения дифракции необходимо (см. том. 4), чтобы длина волны де-Бройля дифрагирующих частиц была меньше периодов кристаллической решетки. Этому условию удовлетворяют фотоны при энергии Е = 5-20 кэВ (рентгеновское и гамма- излучение), электроны при Е = 10-100 эВ, и нейтроны при Е = 0,01- 0,1 эВ (тепловые нейтроны с энергией порядка ). Именно эти три частицы наиболее часто используются в дифракционных исследованиях кристаллов. Наиболее просто осуществима дифракция фотонов (рентгеновское излучение, гамма излучение), поэтому их используют чаще, чем дифракцию электронов, для наблюдения которой необходим высокий вакуум, или дифракцию нейтронов, для которой в качестве источника нейтронов нужен громоздкий ядерный реактор. Дифракция нейтронов и электронов очень похожа на дифракцию фотонов, поэтому в данной главе мы подробно рассмотрим применение дифракции фотонов для изучения структуры кристаллической решетки. Эти результаты будут пригодны и для анализа дифракции нейтронов и электронов в кристалле, особенности которой будут отмечены в конце параграфа.
     Кристаллическая решетка играет роль трехмерной дифракционной решетки для фотонов, электронов, нейтронов и других частиц движущихся в кристалле. Закономерности дифракции фотонов - электромагнитных волн на кристалле как трехмерной решетке можно рассчитать по той же схеме, как в томе 4 рассчитывалась дифракционная картина одномерной дифракционной решетки с N щелями, а именно, сначала рассчитывали картину от бесконечно узких щелей, а затем учитывали конечность их ширины. Получалась картина из серии наиболее ярких максимумов, интенсивность которых задавалась характером распределения интенсивности в пределах одной щели.


К физическим свойствам твердых тел относятся механические, тепловые, электрические, магнитные и оптические свойства. Их изучают, наблюдая, как ведет себя образец при изменении температуры, давления или объема, в условиях механических напряжений, электрических и магнитных полей, температурных градиентов
Математика Примеры решения задач физика