Динамика вращательного движения Динамика материальной точки и тела Механические колебания Волны в упругой среде. Акустика Молекулярное строение вещества Молекулярно-кинетическая теория газов Строение атома и молекул

Дифракция излучения и частиц на кристаллической решетке

 Построение Эвальда. Для предсказания углов поворота кристалла и направления дифрагированных лучей очень удобно пользоваться построением Эвальда (рис. 1.14).
Рис.1.14
Рис. 1.14.
Построение Эвальда.
     Отложим волновой вектор падающей на кристалл волны, так что его конец совпадет с узлом 0 0 0 обратной решетки. Поскольку частота и скорость рассеянной и падающей волны совпадают, вектор рассеянной волны будет иметь ту же длину, что и , но неопределенное направление, тогда его удобно изобразить в виде сферы (сферы Эвальда) с центром в начале вектора . Начало и конец вектора рассеяния тогда будет соответственно концом вектора и концом вектора. Теперь надо узнать, совпадет ли один из возможных векторов с одним из узлов обратной решетки. Для этого следует совместить начальный узел обратной решетки с началом вектора рассеяния (эта же точка - конец вектора ) и посмотреть, попал ли один из узлов на сферу Эвальда. Ясно, что вероятность попадания одного из точечных узлов на сферу практически равна нулю, чтобы такое попадание имело место, необходимо повернуть кристалл и связанную с ним обратную решетку. Теперь уже с помощью геометрии можно вычислить необходимые углы поворота обратной решетки (и кристалла), а затем определить, под какими углами должен быть расположен детектор излучения, регистрирующий волны с вектором . Современные приборы для наблюдения дифракции - дифрактометры, снабженные ЭВМ, позволяют в автоматическом режиме, по формулам, описывающим повороты обратной решетки, вычислять нужные углы поворота кристалла и детектора излучения для заранее сориентированного кристалла, а затем поворачивать кристалл и детектор.
     На рис. 1.14 видно, что между длинами векторов и существует связь:
     
Формула 1.18,(1.18)
     где - известный [1,9,10] угол скольжения рентгеновских лучей. Учитывая, что (, а получаем известное уравнение Вульфа-Брегга:
     В этом уравнении содержит порядок отражения, так как , кратные одному числу, например 2; 3; 4;... учитывают порядок отражения [1].
     Обратная решетка поликристалла. Поликристаллический материал, как отмечалось в разд 1.1, состоит из очень большого числа произвольно ориентированных маленьких кристаллических зерен. Каждому такому зерну будет соответствовать своя обратная решетка. Обратные решетки, отвечающие разным зернам, будут иметь одинаковые периоды и идентичное расположение узлов, но будут произвольным образом ориентированы относительно узла обратной решетки. В таком случае узлу обратной решетки будет соответствовать большое количество узлов (по числу кристаллических зерен), расположенных по поверхности сферы радиуса в обратном пространстве. В случае идеального поликристалла, содержащего бесконечное число случайно ориентированных зерен можно считать что узел обратной решетки превратится в сферу. Набору же всех узлов обратной решетки будет соответствовать набор таких сфер со значениями радиусов , образующих последовательность в соответствии со значениями межплоскостных расстояний кристалла. На построении Эвальда (см. рис. 1.14) в таком случае сфера Эвальда будет пересекать набор сфер по некоторым окружностям. Тогда очевидно, что дифракция от такого поликристалла окажется возможной при любой ориентации поликристалла и при любой длине волны излучения. Для наблюдения дифракции от поликристаллического образца необходимо использовать монохроматическое излучение. Подробно методики исследования поликристаллических образцов изложены в литературе по рентгеновским методам исследования [2,8,10,11].


К физическим свойствам твердых тел относятся механические, тепловые, электрические, магнитные и оптические свойства. Их изучают, наблюдая, как ведет себя образец при изменении температуры, давления или объема, в условиях механических напряжений, электрических и магнитных полей, температурных градиентов
Математика Примеры решения задач физика