Динамика вращательного движения Динамика материальной точки и тела Механические колебания Волны в упругой среде. Акустика Молекулярное строение вещества Молекулярно-кинетическая теория газов Строение атома и молекул

Дифракция излучения и частиц на кристаллической решетке

Зоны Бриллюэна. Полезно найти множество всех волновых векторов волн и частиц, отвечающих условию дифракции на кристалле. Уравнение (1.18) можно переписать как:
     
Формула 1.20.(1.20)
     Последнее есть уравнение (относительно ) для плоскости перпендикулярной вектору и отстоящей от начала координат на расстоянии . Оно же описывает возможные координаты вектора , удовлетворяющие условию дифракции. Тогда множество концов векторов , отвечающих условию дифракции, лежит на плоскостях, проходящих через середины всех векторов обратной решетки и перпендикулярных им. Именно таким способом строилась нами граница элементарной ячейки Вигнера-Зейтца в предыдущем разделе. Ячейку Вигнера-Зейтца, построенную в обратном пространстве, принято называть первой зоной Бриллюэна. Она обладает важным свойством: волны и частицы, волновой вектор которых находится на ее границе, удовлетворяют условию дифракции. Зоны Бриллюэна играют важную роль при рассмотрении движения электронов, фононов и других частиц в кристалле и при анализе энергетических зон в кристаллах (см. главы 3-5).
     Структурный фактор базиса. До сих пор мы рассматривали дифракцию на кристаллической решетке, считая каждый ее узел одним точечным рассеивающим центром. С каждым таким центром обычно связаны несколько идентично расположенных атомов, называемых базисом кристаллической решетки. Волны, рассеянные на разных атомах базиса будут складываться с разными фазами в зависимости от положения атома. Схема учета вкладов в амплитуду вектора дифрагированного луча такая же как и при расчете дифракционной картины трехмерного кристалла, только суммирование надо будет проводить по всем атомам базиса, а не узлам кристаллической решетки.
     Пусть базис содержит несколько атомов. Обозначим за номер одного из них, а через - его радиус вектор относительно начала элементарной ячейки, содержащей этот атом, а через - вклад этого атома в амплитуду вектора рассеянной волны. Тогда вклад в амплитуду для дифракции, отвечающей вектору рассеяния , будет содержать фазовый множитель и будет пропорционален :
     
Формула 1.21.(1.21)
     Вклад от всех атомов базиса тогда выражается суммой по индексу :
     
Формула 1.22.(1.22)
     Учитывая, что и , а также соотношения (1.15) получаем:
     
Формула 1.23.(1.23)
     Величину принято называть структурным фактором базиса данного кристалла или же структурным фактором элементарной ячейки вещества. Эта величина будет определять относительную амплитуду дифракционных максимумов, даваемых трехмерной кристаллической решеткой. Для данного кристалла зависит от вектора рассеяния, она может оказаться равной нулю для некоторого узла обратной решетки. В таком случае волны, дифрагированные разными атомами базиса, складываются, давая суммарную нулевую амплитуду, то есть погасят друг друга. При этом сама кристаллическая решетка, состоящая из "точечных узлов" могла бы обеспечить сильную дифракцию (если вектор рассеяния совпадет с одним из узлов ее обратной решетки).


К физическим свойствам твердых тел относятся механические, тепловые, электрические, магнитные и оптические свойства. Их изучают, наблюдая, как ведет себя образец при изменении температуры, давления или объема, в условиях механических напряжений, электрических и магнитных полей, температурных градиентов
Математика Примеры решения задач физика