Динамика вращательного движения Динамика материальной точки и тела Механические колебания Волны в упругой среде. Акустика Молекулярное строение вещества Молекулярно-кинетическая теория газов Строение атома и молекул

Дифракция излучения и частиц на кристаллической решетке

 Вычислим структурный фактор ОЦК решетки. Если за элементарную ячейку принять куб (см. рис. 1.1), то базис будет состоять из двух атомов с координатами и 1/2; 1/2; 1/2, и структурный фактор для узла с индексами обратной решетки, вычисленный по формуле (1.23), окажется равным:
     
Формула 1.24.(1.24)
     Видно, что равен нулю, если сумма индексов - нечетная и равен 2, если сумма индексов четная. Если теперь в обратной решетке отметить кружочками узлы с ненулевым структурным фактором, то кружочки расположатся в обратном пространстве как узлы ГЦК решетки (рис. 1.15).
Рис.1.15
Рис. 1.15.
Расположение узлов обратной решетки для ОЦК решетки и структур типа CsCl
     Для узлов, отмеченных светлыми кружочками на рис. 1.15, дифракции не наблюдается, так как волны, рассеянные атомами расположенными в центре кубической ячейки, будут в противофазе с волнами, рассеянными атомами расположенными в углах ячейки. Это просто объяснить с помощью рис. 1.16 . На нем изображена плоскость (100) ОЦК ячейки, обозначенная как А. Видно, что параллельно ей можно провести плоскость (200), обозначенную как В, на которой будет расположено столько же атомов. Получается, что плоскости аналогичные (100) расположены как бы в два раза "гуще". Волны отраженные от плоскостей типа А при отсутствии вложенных плоскостей В усиливают друг друга, но появление плоскостей В приведет к появлению отраженной от них волны той же амплитуды, но сдвинутой по фазе на относительно волн отраженных от плоскости А. Сумма же вкладов в амплитуду дифрагированной волны от плоскостей А и В окажется равной нулю. На рентгенограммах ОЦК решетки наблюдаются отражения от плоскостей типа (110), (200), (112), (220), (130), (222) и других с четной суммой индексов. Отсутствие на рентгенограммах отражений с нечетной суммой индексов - признак ОЦК решетки.
Рис.1.16
Рис. 1.16.
Отражение волн плоскостью (100) ОЦК решетки.
     Рассмотрим теперь структуру типа цезий хлор (рис. 1.1), имеющую кубическую ячейку с базисом из двух атомов с координатами 000 - для и 1/2 1/2 1/2 - для . Ее структурный фактор, вычисляемый по формуле (1.23), окажется равным:
     
Формула 1.25.(1.25)
     Он не будет равен нулю ни при четной, ни при нечетной сумме индексов. В самом деле, теперь атомы расположенные в центре и по углам элементарной ячейки - разные, следовательно и рассеивают волны они по-разному . Структурный фактор окажется либо суммой, либо разностью неравных величин и . Если теперь рассмотреть, как в случае ОЦК решетки, плоскости типа А и В на рис. 1.16 , то видно, что они уже разные - содержат разные атомы и будут давать разный по величине вклад в амплитуду рассеяния или одного или противоположного знака. Сумма вкладов не будет равной нулю. Поэтому узлам обратной решетки с четной суммой индексов (когда вклады атомов хлора и цезия складываются), например (200), будут соответствовать сильные дифракционные максимумы (кружочки) а нечетной сумме индексов (когда вклады атомов хлора и цезия вычитаются), например (100), - слабые дифракционные максимумы. По расположению узлов в обратной решетке тогда можно определить период решетки, а по чередованию "ярких" и "слабых" узлов - определить положение атомов в базисе решетки.

 

К физическим свойствам твердых тел относятся механические, тепловые, электрические, магнитные и оптические свойства. Их изучают, наблюдая, как ведет себя образец при изменении температуры, давления или объема, в условиях механических напряжений, электрических и магнитных полей, температурных градиентов
Математика Примеры решения задач физика