Диаграмма усталостной прочности Основы вибропрочности конструкций Явление Резонанса. Расчет динамического коэффициента при ударной нагрузке Метод сил Прочность при циклически изменяющихся напряжениях

Сопротивление материалов Ударная нагрузка

На основании анализа напряженного состояния конструкции выявляется та точка сооружения, где возникают наибольшие на­пряжения. Расчетная величина напряжений сопоставляется с предельно допустимой величиной напряжений для данного материала, полученной на основе предварительных лабораторных испытаний. Из сопоставления найденных расчетных напряжений и предельных напряжений делается заключение о прочности конструкции.

Расчет динамического коэффициента при ударной нагрузке.

Основные положения

Явление удара получается в том случае, когда скорость рассматриваемой части конструкции или соприкасающихся с ней частей изменяется в очень короткий период времени.

При забивке свай тяжелый груз падает с некоторой высоты на верхний торец сваи и погружает ее в грунт; баба останавливается почти мгновенно, вызывая удар. Аналогичные явления происходят при ковке; удар испытывают и проковываемое изделие и шток молота с бойком, так как последний очень быстро останавливается при соприкосновении с изделием. Во время удара между обеими ударяющимися деталями возникают весьма большие взаимные давления. Скорость ударяющего тела за очень короткий промежуток времени изменяется и в частном случае падает до нуля; тело останавливается. Значит, на него от ударяемой детали передаются очень большие ускорения, направленные в сторону, обратную его движению, т. е. передается реакция , равная произведению массы ударяющего тела на это ускорение.

Обозначая это ускорение через а, можно написать, что реакция , где Q — вес ударяющего тела. По закону равенства действия и противодействия на ударяемую. часть конструкции передается такая же сила, но обратно направленная (рис.1). Эти силы и вызывают напряжения в обоих телах.



Рис.1. Расчетная схема ударного нагружения.

Таким образом, в ударяемой части конструкции возникают такие напряжения, как будто к ней была приложена сила инерции ударяющего тела; мы можем вычислить эти напряжения, рассматривая силу инерции как статическую нагрузку нашей конструкции. Затруднение заключается в вычислении этой силы инерции. Продолжительности удара, т. е. величины того промежутка времени, в течении которого происходит падение скорости до нуля, мы не знаем. Поэтому остается неизвестной величина ускорения а, а стало быть, и силы . Таким образом, хотя вычисление напряжений при ударе представляет собой частный случай задачи учета сил инерции, однако для вычисления силы и связанных с ней напряжений и деформаций здесь приходится применять иной прием и пользоваться законом сохранения энергии.

При ударе происходит очень быстрое превращение одного вида энергии в другой: кинетическая энергия ударяющего тела превращается в потенциальную энергию деформации. Выражая эту энергию в функции силы или напряжений, или деформаций получаем возможность вычислить эти величины.

Общий прием вычисления динамического коэффициента при ударе.

Предположим, что очень жесткое тело А весом Q, деформацией которого можно пренебречь, падая с некоторой высоты H, ударяет по другому телу B, опирающемуся на упругую систему С (рис.2). В частном случае это может быть падение груза на конец призматического стержня, другой конец которого закреплен (продольный удар), падение груза на балку, лежащую на опорах (изгибающий удар), и т. п.



Рис.2. Динамическая модель ударного нагружения.

Предельная (разрушающая) нагрузка сопоставляется с проектной нагрузкой, и на этом основании делается вывод о несущей способности конструкции в эксплуатационных условиях. Методы расчета конструкций выбираются в зависимости от условий работы конструкций и требований, которые к ней предъявляются. Если необходимо добиться наименьших изменений формы конструкции, то производится расчет по допускаемым перемещениям. Это не исключает и одновременной проверки системы на прочность по напряжениям.
Расчет быстровращающегося диска